Металлургия » Металлургия стали » Физические свойства шлаков определяют поведение шлаков в процессе плавки.

Физические свойства шлаков определяют поведение шлаков в процессе плавки.

 (голосов: 0)
Физические свойства шлаков определяют поведение шлаков в процессе плавки
1. Температура плавления шлаков
Физические свойства шлаков определяют поведение шлаков в процессе плавки.I – основной процесс;
II – кислый процесс

Рисунок 1 – Зависимость температуры плавления мартеновских шлаков от содержания в них SiO2






Температура плавления шлаков (шлаки имеют многокомпонентный состав и плавятся в интервале температур, т.е. имеют начало и конец плавления. Здесь и в дальнейшем имеется в виду температура конца плавления шлаков) является их основной физической характеристикой, определяющей другие важные физико-химические свойства. Это связано с тем, что в любом сталеплавильном агрегате в каждый период плавки температура металла и шлака изменяется в узких пределах, поэтому перегрев шлаков выше температуры плавления в основном определяется температурой плавления. Степень перегрева шлака определяет поведение шлака, его физические свойства (вязкость, электрическую проводимость) и химическую активность (рафинирующее действие на металл, поглощение газов из газовой фазы и т.д.). На температуру плавления шлака может влиять любой его компонент. Однако, как показывают исследования, для обычных окислительных шлаков первостепенное значение имеет изменение содержания SiO2 (см. рисунок 1).
Наиболее легкоплавкие шлаки (tпл = 1200-1300°С) содержат 30-40% SiO2. Как снижение, так и увеличение содержания SiO2 в шлаке выше указанных пределов приводит к повышению температуры плавления.
Содержание SiO2 равное 30-40%, обычно наблюдается в начале плавки как в основных, так и в кислых процессах. По ходу плавки в основных процессах содержание SiO2 снижается, а в кислых процессах повышается, поэтому температура плавления шлаков по ходу плавки обычно повышается.
Обычно для разжижения основных шлаков используют добавки боксита (основные составляющие Al2O3, SiO2, Fе2О3), плавикового шпата (CaF2), боя шамотного кирпича (SiO2, Al2O3), в некоторых случаях песка (SiO2).
.

2. Вязкость шлаков
Физические свойства шлаков определяют поведение шлаков в процессе плавки. Рисунок 2 – Зависимость вязкости шлака (Па∙с) от температуры и основности (цифры на кривых)






Вязкость шлака является важнейшим из свойств. Повышенная вязкость шлака затрудняет тепло- и массоперенос в шлаке, вызывает замедление всех процессов нагрева и рафинирования металла, приводит к излишнему угару раскисляющих и легирующих присадок, уменьшает выход годной стали. Вязкость шлака зависит от его температуры и состава.
Зависимость вязкости шлаков периода плавления в основной мартеновской печи от температуры приведена на рисунке 2, из которого видно, что в области умеренно низких температур начала плавки (вблизи температуры плавления) вязкость шлаков высока и возрастает при увеличении их основности. Значения вязкости нормальных шлаков по ходу плавки обычно находятся в пределах 0,1-0,3.
Компонентами шлака, резко повышающими его вязкость, прежде всего являются МgО (> 10-12%) и Сг2О3 (>5-6%); эти компоненты при содержаниях выше указанных пределов обогащают шлак мелкодисперсными частицами.
Вязкость основных шлаков существенно снижается при введении 2-5% CaF2 5-7% Al2O3, 5-7% Na2O или К2О.

3. Вспенивание шлака
Вспенивание шлака вызывают мелкие пузыри СО, образующиеся в результате окисления углерода металла и остающиеся в шлаке ввиду того, что архимедова (подъемная) сила из-за большой удельной поверхности оказывается недостаточной для преодоления сопротивления (силы трения) шлакового расплава.
Некоторое, не чрезмерное вспенивание шлака в кислородных конвертерах с верхней подачей дутья играет положительную роль - повышается и стабилизируется усвоение кислорода ванной, создаются препятствия выпуску из конвертера капель металла и поглощению азота из подсасываемого через горловину воздуха. Чрезмерное вспенивание приводит к выбросам значительных объемов шлака из любого агрегата, что недопустимо. В мартеновских печах даже умеренное вспенивание, не приводящее к выбросам шлака, нежелательно, поскольку пенистый шлак, обладая низкой теплопроводностью, ухудшает теплопередачу от факела к металлу, что вызывает удлинение плавки и повышение износа футеровки, особенно свода печи, поскольку значительная часть неусвоенного металлом тепла поглощается футеровкой, а это приводит к ее перегреву.
Причиной чрезмерного вспенивания шлака могут быть повышенное содержание в шлаке SiO2 и Р2О5 образующие поверхностно-активные анионы SiO44- и РО43-, которые повышают устойчивость пены. Аналогичное действие оказывает наличие в шлаке очень мелких твердых частиц, которые повышают механическую прочность шлаковых пленок (служат "каркасом").
Для снижения склонности шлака к чрезмерному вспениванию из-за наличия в нем очень мелких твердых частиц необходимо повышение температуры, которое обеспечивает растворение твердых частиц в шлаке. Если же чрезмерное вспенивание вызывается повышенным содержанием в шлаке SiO2 и Р2О5, то необходимо повысить основность шлака присадкой в ванну извести, еще лучше присадка CaF2, и оксидов щелочных металлов.
Общие принципы установления оптимального шлакового режима плавки
Основными параметрами, определяющими шлаковый режим плавки, являются основность и количество шлака. Оптимальный шлаковый режим достигается одновременным изменением и химического состава (основности), и количества шлака. Если по условиям ведения плавки (высокое качество исходного сырья, умеренные требования к качеству стали и т.п.) нет необходимости в специальных мерах для удаления из металла серы или фосфора, то основность шлака должна обеспечивать предотвращение чрезмерного разрушающего действия шлака на футеровку агрегата. Для выполнения этого требования достаточно иметь основность конечного шлака 2,2-2,4. Если по ходу плавки требуется принятие специальных мер для удаления серы и фосфора, то основность шлака должна обеспечивать максимальное поглощение шлаком этих примесей. Этому требованию соответствуют конечные шлаки с основностью 2,7-3,3 в мартеновском процессе и 3,0—4,0 в кислородно-конвертерном процессе.
Если за счет повышения основности шлака не удается провести рафинирование металла, прибегают к увеличению его количества, путем «скачивания» отработанного шлака и «наведения» нового шлака. Поскольку наведение дополнительного шлака удлиняет плавку и ведет к дополнительным потерям металла, стараются вести процесс в одношлаковом режиме.
Печать

РЕКЛАМА

Видео металлургия

Счетчики